|
29330 |
codeforces#P993B
Open Communication
|
0 / 0 |
6 |
|
29331 |
codeforces#P993C
Careful Maneuvering
|
0 / 0 |
7 |
|
29332 |
codeforces#P993D
Compute Power
|
0 / 0 |
9 |
|
29333 |
codeforces#P993E
Nikita and Order Statistics
|
0 / 0 |
8 |
|
29334 |
codeforces#P993F
The Moral Dilemma
|
0 / 0 |
10 |
|
29335 |
codeforces#P994A
Fingerprints
|
1 / 1 |
3 |
|
29336 |
codeforces#P994B
Knights of a Polygonal Table
|
0 / 0 |
4 |
|
29337 |
codeforces#P995A
Tesla
|
0 / 0 |
7 |
|
29338 |
codeforces#P995B
Suit and Tie
|
0 / 0 |
4 |
|
29339 |
codeforces#P995C
Leaving the Bar
|
0 / 1 |
8 |
|
29340 |
codeforces#P995D
Game
|
0 / 0 |
9 |
|
29341 |
codeforces#P995E
Number Clicker
|
0 / 0 |
10 |
|
29342 |
codeforces#P995F
Cowmpany Cowmpensation
|
2 / 2 |
10 |
|
29343 |
codeforces#P996A
Hit the Lottery
|
1 / 1 |
3 |
|
29344 |
codeforces#P996B
World Cup
|
0 / 0 |
4 |
|
29345 |
codeforces#P997A
Convert to Ones
|
0 / 0 |
5 |
|
29346 |
codeforces#P997B
Roman Digits
|
0 / 0 |
7 |
|
29347 |
codeforces#P997C
Sky Full of Stars
|
0 / 0 |
9 |
|
29348 |
codeforces#P997D
Cycles in product
|
1 / 6 |
10 |
|
29349 |
codeforces#P997E
Good Subsegments
|
1 / 1 |
10 |
|
29350 |
codeforces#P998A
Balloons
|
0 / 0 |
3 |
|
29351 |
codeforces#P998B
Cutting
|
0 / 0 |
4 |
|
29352 |
codeforces#P999A
Mishka and Contest
|
0 / 0 |
3 |
|
29353 |
codeforces#P999B
Reversing Encryption
|
0 / 0 |
3 |
|
29354 |
codeforces#P999C
Alphabetic Removals
|
0 / 0 |
4 |
|
29355 |
codeforces#P999D
Equalize the Remainders
|
0 / 0 |
6 |
|
29356 |
codeforces#P999E
Reachability from the Capital
|
1 / 1 |
7 |
|
29357 |
codeforces#P999F
Cards and Joy
|
0 / 0 |
7 |
|
29358 |
codeforces#P1000A
Codehorses T-shirts
|
2 / 10 |
4 |
|
29359 |
codeforces#P1000B
Light It Up
|
1 / 4 |
5 |
|
29360 |
codeforces#P1000C
Covered Points Count
|
1 / 3 |
5 |
|
29361 |
codeforces#P1000D
Yet Another Problem On a Subsequence
|
1 / 2 |
6 |
|
29362 |
codeforces#P1000E
We Need More Bosses
|
0 / 0 |
7 |
|
29363 |
codeforces#P1000F
One Occurrence
|
3 / 6 |
9 |
|
29364 |
codeforces#P1000G
Two-Paths
|
0 / 0 |
10 |
|
29365 |
codeforces#P1001A
Generate plus state or minus state
|
0 / 0 |
3 |
|
29366 |
codeforces#P1001B
Generate Bell state
|
0 / 0 |
4 |
|
29367 |
codeforces#P1001C
Generate GHZ state
|
0 / 0 |
4 |
|
29368 |
codeforces#P1001D
Distinguish plus state and minus state
|
0 / 0 |
4 |
|
29369 |
codeforces#P1001E
Distinguish Bell states
|
0 / 0 |
5 |
|
29370 |
codeforces#P1001F
Distinguish multi-qubit basis states
|
0 / 0 |
4 |
|
29371 |
codeforces#P1001G
Oracle for f(x) = k-th element of x
|
0 / 0 |
4 |
|
29372 |
codeforces#P1001H
Oracle for f(x) = parity of the number of 1s in x
|
0 / 0 |
4 |
|
29373 |
codeforces#P1001I
Deutsch-Jozsa algorithm
|
0 / 0 |
5 |
|
29374 |
codeforces#P1001I
Deutsch-Jozsa algorithm
|
0 / 0 |
5 |
|
29375 |
codeforces#P1002A1
Generate superposition of all basis states
|
1 / 1 |
3 |
|
29376 |
codeforces#P1002A2
Generate superposition of zero state and a basis state
|
0 / 0 |
4 |
|
29377 |
codeforces#P1002A3
Generate superposition of two basis states
|
0 / 0 |
5 |
|
29378 |
codeforces#P1002A4
Generate W state
|
0 / 0 |
6 |
|
29379 |
codeforces#P1002B1
Distinguish zero state and W state
|
0 / 0 |
4 |