atcoder#DPW. Intervals

Intervals

Score : 100100 points

Problem Statement

Consider a string of length NN consisting of 0 and 1. The score for the string is calculated as follows:

  • For each ii (1iM1 \leq i \leq M), aia_i is added to the score if the string contains 1 at least once between the lil_i-th and rir_i-th characters (inclusive).

Find the maximum possible score of a string.

Constraints

  • All values in input are integers.
  • 1N2×1051 \leq N \leq 2 \times 10^5
  • 1M2×1051 \leq M \leq 2 \times 10^5
  • 1liriN1 \leq l_i \leq r_i \leq N
  • ai109|a_i| \leq 10^9

Input

Input is given from Standard Input in the following format:

NN MM

l1l_1 r1r_1 a1a_1

l2l_2 r2r_2 a2a_2

::

lMl_M rMr_M aMa_M

Output

Print the maximum possible score of a string.

5 3
1 3 10
2 4 -10
3 5 10
20

The score for 10001 is a1+a3=10+10=20a_1 + a_3 = 10 + 10 = 20.

3 4
1 3 100
1 1 -10
2 2 -20
3 3 -30
90

The score for 100 is a1+a2=100+(10)=90a_1 + a_2 = 100 + (-10) = 90.

1 1
1 1 -10
0

The score for 0 is 00.

1 5
1 1 1000000000
1 1 1000000000
1 1 1000000000
1 1 1000000000
1 1 1000000000
5000000000

The answer may not fit into a 32-bit integer type.

6 8
5 5 3
1 1 10
1 6 -8
3 6 5
3 4 9
5 5 -2
1 3 -6
4 6 -7
10

For example, the score for 101000 is $a_2 + a_3 + a_4 + a_5 + a_7 = 10 + (-8) + 5 + 9 + (-6) = 10$.