atcoder#ABC271H. [ABC271Ex] General General

[ABC271Ex] General General

Score : 600600 points

Problem Statement

Solve the following problem for TT test cases.

A piece is placed at the origin (0,0)(0, 0) on an xyxy-plane. You may perform the following operation any number of (possibly zero) times:

  • Choose an integer ii such that 1i81 \leq i \leq 8 and si=s_i= 1. Let (x,y)(x, y) be the current coordinates where the piece is placed.- If i=1i=1, move the piece to (x+1,y)(x+1,y).
    • If i=2i=2, move the piece to (x+1,y+1)(x+1,y+1).
    • If i=3i=3, move the piece to (x,y+1)(x,y+1).
    • If i=4i=4, move the piece to (x1,y+1)(x-1,y+1).
    • If i=5i=5, move the piece to (x1,y)(x-1,y).
    • If i=6i=6, move the piece to (x1,y1)(x-1,y-1).
    • If i=7i=7, move the piece to (x,y1)(x,y-1).
    • If i=8i=8, move the piece to (x+1,y1)(x+1,y-1).
  • If i=1i=1, move the piece to (x+1,y)(x+1,y).
  • If i=2i=2, move the piece to (x+1,y+1)(x+1,y+1).
  • If i=3i=3, move the piece to (x,y+1)(x,y+1).
  • If i=4i=4, move the piece to (x1,y+1)(x-1,y+1).
  • If i=5i=5, move the piece to (x1,y)(x-1,y).
  • If i=6i=6, move the piece to (x1,y1)(x-1,y-1).
  • If i=7i=7, move the piece to (x,y1)(x,y-1).
  • If i=8i=8, move the piece to (x+1,y1)(x+1,y-1).

Your objective is to move the piece to (A,B)(A, B). Find the minimum number of operations needed to achieve the objective. If it is impossible, print -1 instead.

Constraints

  • 1T1041 \leq T \leq 10^4
  • 109A,B109-10^9 \leq A,B \leq 10^9
  • sis_i is 0 or 1.
  • TT, AA, and BB are integers.

Input

The input is given from Standard Input in the following format:

TT

case1\mathrm{case}_1

case2\mathrm{case}_2

\vdots

caseT\mathrm{case}_T

Here, casei\mathrm{case}_i denotes the ii-th test case.

Each test case is given in the following format:

AA BB s1s2s3s4s5s6s7s8s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8

Output

Print TT lines in total. The ii-th line should contain the answer to the ii-th test case.

7
5 3 10101010
5 3 01010101
5 3 11111111
5 3 00000000
0 0 11111111
0 1 10001111
-1000000000 1000000000 10010011
8
5
5
-1
0
-1
1000000000