1 条题解
-
2
题意:强制在线,求最小的 ,使得保留边权 的边集后 所在连通块有不少于 种颜色。
30分暴力:二分这个权值 ,暴力 统计 所在连通块内的颜色数目。
复杂度是 。
#include <cstdio> #include <iostream> #include <vector> #include <algorithm> #define rep(i,a,b) for(int i=(a);i<=(b);++i) #define per(i,a,b) for(int i=(a);i>=(b);--i) #define repp(i,a,b) for(int i=(a);i<(b);++i) #define perr(i,a,b) for(int i=(a);i>(b);--i) #define rii(x,y) ri(x), ri(y) #define riii(x,y,z) ri(x), ri(y), ri(z) #define rz resize #define pb push_back #define clr clear using namespace std; struct edge { int x, w; }; vector< vector<edge> > g; vector< vector<int> > col; vector<int> buc, stk; int wt, v_col; inline void ri(int &x) { x = 0; char ch; int f = 1; do { ch = getchar(); if(ch == '-') f = -1; } while( ch < '0' || ch > '9'); do { x = (x<<3) + (x<<1) + (ch&15), ch = getchar(); } while(ch >= '0' && ch <= '9'); x *= f; } vector<int> vis; void dfs(int cur, int pre) { vis[cur] = v_col; for(int cl : col[cur]) buc[cl] = v_col; for(edge e : g[cur]) if(vis[e.x] != v_col && e.w <= wt) dfs(e.x, cur); } int check(int n, int start, int weight) { wt = weight; ++v_col; dfs(start, 0); int ret = 0; for(int i : buc) if(i == v_col) ++ret; return ret; } int main() { int n, m, nums, a, u, v, w; rii(n, m); col.rz(n + 1); g.rz(n + 1); stk.pb(0); rep(i,1,n) { ri(nums); rep(j,1,nums) ri(a), col[i].pb(a); } rep(i,1,m) { riii(u, v, w); g[u].pb({v, w}); g[v].pb({u, w}); stk.pb(w); } sort(stk.begin(), stk.end()); vector<int>::iterator ed = unique(stk.begin(), stk.end()); stk.erase(ed, stk.end()); buc.assign(stk[stk.size()-1]+10, 0); vis.assign(n + 10, 0); int q, k; rii(q, k); int lastans = 0; rep(qr, 1, q) { int l = 0, r = stk.size() - 1, s, t; rii(s, t); s = (s ^ lastans) % n + 1, t = (t ^ lastans) % k + 1; if(check(n, s, stk[r]) < t) { puts("-1"); lastans = 0; continue; } while(l < r) { int mid = (l + r) >> 1; if(check(n, s, stk[mid]) >= t) r = mid; else l = mid + 1; } lastans = stk[l]; printf("%d\n", stk[l]); } return 0; }
100分做法:
考虑优化统计颜色数的过程,保留 边集后的极大连通块显然是原图的 kruskal 重构树上所有点权小于等于 且父节点不存在或者权值大于 的结点。
所以原题就等同于在 kruskal 重构树上寻找 代表的叶节点的深度最浅的含有颜色数大于等于 的子树的祖先,显然具有单调性用倍增来找。统计就转化成了在 dfs 序上数颜色数,用主席树维护一下就好了。
复杂度为 。
#include <cstdio> #include <iostream> #include <vector> #include <algorithm> #define rep(i,a,b) for(int i=(a);i<=(b);++i) #define per(i,a,b) for(int i=(a);i>=(b);--i) #define repp(i,a,b) for(int i=(a);i<(b);++i) #define perr(i,a,b) for(int i=(a);i>(b);--i) #define rii(x, y) ri(x), ri(y) #define pb push_back #define rz resize #define clr clear using namespace std; typedef long long ll; typedef double db; typedef long double ldb; inline void ri(int &x) { x = 0; char ch; int f = 1; do { ch = getchar(); if(ch == '-') f = -1; } while( ch < '0' || ch > '9' ); do { x = (x<<3)+(x<<1)+(ch&15), ch = getchar(); } while( ch >= '0' && ch <= '9' ); x *= f; } const int maxn = 1e5+10, maxm = 1e6+10, maxa = 1e5+10; struct edges_kr {int x, y, z;} es[maxm]; vector<int> col[maxn]; vector< vector<int> > krt; int fa[maxn<<1][25], par[maxn<<1], wt[maxn<<1]; int find(int x) { return x == par[x] ? x : par[x] = find(par[x]); } void krt_build(int n, int m) { sort( es + 1, es + m + 1, [&](edges_kr &a, edges_kr &b) { return a.z < b.z; } ); rep(i,1,(n<<1)-1) par[i] = i, wt[i] = 0; krt.clr(); krt.rz(n << 1); int cnt = n; rep(i,1,m) { int x = find(es[i].x), y = find(es[i].y), z = es[i].z; if(x == y) continue; krt[++cnt].pb(x), krt[cnt].pb(y); wt[cnt] = z; fa[x][0] = fa[y][0] = par[x] = par[y] = cnt; if(cnt == (n<<1) - 1) break; } } int dfn[maxn<<1], idfn[maxn<<1], dep[maxn<<1], siz[maxn<<1], dfs_clock; void dfs(int cur) { dfn[cur] = ++dfs_clock; idfn[dfs_clock] = cur; dep[cur] = dep[fa[cur][0]] + 1; siz[cur] = 1; for(int i = 1; i < 23; ++i) fa[cur][i] = fa[fa[cur][i-1]][i-1]; for(int ver : krt[cur]) dfs(ver), siz[cur] += siz[ver]; } int rt[maxn<<1], ls[maxm*40], rs[maxm*40], dat[maxm*40], tot; void ist(int &p, int pre, int lp, int rp, int x, int v) { p = ++tot; if(lp == rp) { dat[p] = dat[pre] + v; return; } int mid = (lp + rp) >> 1; if(x <= mid) rs[p] = rs[pre], ist(ls[p], ls[pre], lp, mid, x, v); else ls[p] = ls[pre], ist(rs[p], rs[pre], mid+1, rp, x, v); dat[p] = dat[ls[p]] + dat[rs[p]]; } int qry(int p, int lp, int rp, int x) { if(x <= lp) return dat[p]; int mid = (lp + rp) >> 1; if(x <= mid) return qry(ls[p], lp, mid, x) + dat[rs[p]]; return qry(rs[p], mid+1, rp, x); } int pre[maxa]; int main() { int n, m, nums, a; rii(n, m); rep(i,1,n) { ri(nums); rep(j,1,nums) ri(a), col[i].pb(a); } rep(i,1,m) { ri(es[i].x); ri(es[i].y); ri(es[i].z); } krt_build(n, m); dfs((n<<1)-1); rep(i,1,(n<<1)-1) { if(idfn[i] > n || col[idfn[i]].empty()) { rt[i] = rt[i-1]; continue; } ist(rt[i], rt[i-1], 1, (n<<1)-1, i, col[idfn[i]].size()); for(int cl : col[idfn[i]]) { if(pre[cl]) ist(rt[i], rt[i], 1, (n<<1)-1, pre[cl], -1); pre[cl] = i; } } int sum = 0; rep(i,1,maxa-10) sum += (pre[i] != 0); int lastans = 0; int q, s, t, k; rii(q, k); rep(qr,1,q) { rii(s, t); s = (s ^ lastans) % n + 1, t = (t ^ lastans) % k + 1; if(col[s].size() >= t) { puts("0"); lastans = 0; continue; } if(t > sum) { puts("-1"); lastans = 0; continue; } per(i,23,0) { if(!fa[s][i]) continue; if(qry(rt[dfn[fa[s][i]]+siz[fa[s][i]]-1], 1, (n<<1)-1, dfn[fa[s][i]]) < t) s = fa[s][i]; } s = fa[s][0]; printf("%d\n", wt[s]); lastans = wt[s]; } return 0; }
暴踩 std :
用线段树合并 / set启发式合并能在单 预处理之后 查询,暴踩 std 。
- 1
信息
- ID
- 138
- 时间
- 1500ms
- 内存
- 512MiB
- 难度
- 8
- 标签
- 递交数
- 30
- 已通过
- 7
- 上传者