luogu#P9701. [GDCPC2023] Classic Problem

[GDCPC2023] Classic Problem

题目描述

Given an undirected complete graph with nn vertices and mm triples P1,P2,,PmP_1, P_2, \cdots, P_m where Pi=(ui,vi,wi)P_i = (u_i, v_i, w_i), it's guaranteed that 1ui<vin1 \leq u_i < v_i \leq n, and for any two triples PiP_i and PjP_j with different indices we have (ui,vi)(uj,vj)(u_i, v_i) \ne (u_j, v_j).

For any two vertices xx and yy in the graph (1x<yn1 \leq x < y \leq n), define the weight of the edge connecting them as follows:

  • If there exists a triple PiP_i satisfying ui=xu_i = x and vi=yv_i = y, the weight of edge will be wiw_i.
  • Otherwise, the weight of edge will be xy|x - y|.

Calculate the total weight of edges in the minimum spanning tree of the graph.

输入格式

There are multiple test cases. The first line of the input contains an integer TT (1T1051 \le T \le 10^5) indicating the number of test cases. For each test case:

The first line contains two integers nn and mm (1n1091 \leq n \leq 10^9, 0m1050 \leq m \leq 10^5) indicating the number of vertices in the graph and the number of triples.

For the following mm lines, the ii-th line contains three integers uiu_i, viv_i and wiw_i (1ui<vin1 \leq u_i < v_i \leq n, 0wi1090 \leq w_i \leq 10^9) indicating the ii-th triple. It's guaranteed that for all 1i<jm1 \leq i < j \leq m we have (ui,vi)(uj,vj)(u_i, v_i) \ne (u_j, v_j).

It's guaranteed that the sum of mm of all test cases will not exceed 5×1055 \times 10^5.

输出格式

For each test case output one line containing one integer indicating the total weight of edges in the minimum spanning tree of the graph.

题目大意

【题目描述】

给定一张 nn 个点的无向完全图与 mm 个三元组 P1,P2,,PmP_1, P_2, \cdots, P_m,其中 Pi=(ui,vi,wi)P_i = (u_i, v_i, w_i)。保证 1ui<vin1 \leq u_i < v_i \leq n,且对于任意两个编号不同的三元组 PiP_iPjP_j,有 (ui,vi)(uj,vj)(u_i, v_i) \ne (u_j, v_j)

对于图中的任意两个节点 xxyy1x<yn1 \leq x < y \leq n),定义它们之间的无向边的边权如下:

  • 如果存在一个三元组 PiP_i 满足 ui=xu_i = xvi=yv_i = y,那么边权为 wiw_i
  • 否则,边权为 xy|x - y|

求这张图的最小生成树的边权之和。

【输入格式】

有多组测试数据。第一行输入一个整数 TT1T1051 \le T \le 10^5)表示测试数据组数。对于每组测试数据:

第一行输入两个整数 nnmm1n1091 \leq n \leq 10^90m1050 \leq m \leq 10^5)表示图的点数与三元组的数量。

对于接下来 mm 行,第 ii 行输入三个整数 uiu_iviv_iwiw_i1ui<vin1 \leq u_i < v_i \leq n0wi1090 \leq w_i \leq 10^9)表示第 ii 个三元组。保证对于所有 1i<jm1 \leq i < j \leq m 都有 (ui,vi)(uj,vj)(u_i, v_i) \ne (u_j, v_j)

保证所有数据 mm 之和不超过 5×1055 \times 10^5

【输出格式】

每组数据输出一行一个整数,表示这张图的最小生成树的边权之和。

【样例解释】

第一组样例数据如下图所示,最小生成树用红色线段标出。

第二组样例数据如下图所示,最小生成树用红色线段标出。

第三组样例数据如下图所示,最小生成树用红色线段标出。

3
5 3
1 2 5
2 3 4
1 5 0
5 0
5 4
1 2 1000000000
1 3 1000000000
1 4 1000000000
1 5 1000000000
4
4
1000000003

提示

The first sample test case is illustrated as follows. The minimum spanning tree is marked by red segments.

The second sample test case is illustrated as follows. The minimum spanning tree is marked by red segments.

The third sample test case is illustrated as follows. The minimum spanning tree is marked by red segments.