luogu#P9672. [ICPC2022 Jinan R] Grid Points
[ICPC2022 Jinan R] Grid Points
题目描述
You are given a simple polygon in the first quadrant of the Cartesian plane. This means that the coordinate of any point in the polygon satisfies and .
Consider all grid points in the polygon. Order them in increasing order of \textbf{slopes}. Output the -th grid point in this order.
A grid point is a point such that and are integers. A point on the boundary of a polygon is considered to be in the polygon. The slope of point is . If two points have the same slope, they are ordered lexicographically first by , then by . In other words, a point is lexicographically less than if .
输入格式
The first line contains one integer , the number of test cases.
For each test case, the first line contains two integers . Each of the next lines describes a vertex of the polygon. Each vertex is denoted by two integers , representing its coordinate . The vertices are given in counterclockwise order.
It is guaranteed that the polygon is simple, i.e.~ the vertices are distinct, two edges may overlap only when they are consecutive on the boundary, and the overlap contains exactly point. It is guaranteed that is no more than the number of grid points in the polygon.
It is guaranteed that the sum of over all test cases is no more than .
输出格式
For each test case, output two integers in one line representing the coordinate of the -th grid point.
题目大意
题目描述
在笛卡尔平面的第一个象限中,您会得到一个简单的多边形。这意味着多边形中任何点的坐标满足和。
考虑多边形中的所有网格点。按\textbf{斜率}的递增顺序排列。按此顺序输出第个网格点。
网格点是一个点,使得和是整数。多边形边界上的一个点被认为在多边形中。点的斜率为。如果两个点具有相同的斜率,则它们首先按字典顺序排列,然后按。换句话说,如果,则点在字典上小于$(x_2,y_2)。
输入格式
第一行包含一个整数,即测试用例的数量。
对于每个测试用例,第一行包含两个整数。接下来的每一条线都描述了多边形的一个顶点。每个顶点由两个整数表示,表示其坐标。顶点按逆时针顺序排列。
保证多边形是简单的,即顶点是不同的,两条边只有在边界上连续时才能重叠,并且重叠恰好包含点。可以保证不超过多边形中的网格点数。
保证所有测试用例的总金额不超过2000美元。
输出格式
对于每个测试用例,在一行中输出两个整数,表示第个网格点的坐标。
输入输出样例
输入 #1
4
3 3
1 1
3 1
3 3
4 5000000000000000
1 1
1000000000 1
1000000000 1000000000
100000000
9 22
9 6
6 7
9 7
10 10
6 9
3 9
1 6
1 5
7 3
5 22447972861454999
270353376 593874603
230208698 598303091
237630296 255016434
782669452 568066304
654623868 958264153
输出 #1
3 2
500000000 500000000
7 8
730715389 644702744
4
3 3
1 1
3 1
3 3
4 500000000000000000
1 1
1000000000 1
1000000000 1000000000
1 1000000000
9 22
9 6
6 7
9 7
10 10
6 9
3 9
1 6
1 5
7 3
5 22447972861454999
270353376 593874603
230208698 598303091
237630296 255016434
782669452 568066304
654623868 958264153
3 2
500000000 500000000
7 8
730715389 644702744