luogu#P9671. [ICPC2022 Jinan R] Identical Parity

[ICPC2022 Jinan R] Identical Parity

题目描述

Let the value of a sequence be the sum of all numbers in it.

Determine whether there exists a permutation of length nn such that the values of all subsegments of length kk of the permutation share the same parity. The values share the same parity means that they are all odd numbers or they are all even numbers.

A subsegment of a permutation is a contiguous subsequence of that permutation. A permutation of length nn is a sequence in which each integer from 11 to nn appears exactly once.

输入格式

The first line contains one integer T (1T105)T~(1\le T \le 10^5), the number of test cases.

For each test case, the only line contains two integers n,k (1kn109)n,k~(1 \le k \le n \le 10^9).

输出格式

For each test case, output Yes\texttt{Yes} (without quotes) if there exists a valid permutation, or No\texttt{No} (without quotes) otherwise.

You can output Yes\texttt{Yes} and No\texttt{No} in any case (for example, strings YES\texttt{YES}, yEs\texttt{yEs} and yes\texttt{yes} will be recognized as positive responses).

题目大意

题目描述

定义一个序列的 权值 等于这个序列所有的元素之和。

试判断:是否存在一个长度为 nn排列,满足以下约束条件?

  • 其所有长度为 kk子区间 的权值具有相同的奇偶性。

输入格式

第一行一个整数 TT (1T105)(1\leqslant T\leqslant 10^5),表示测试数据组数。

对于每组测试数据,仅有一行两个整数 n,kn,k (1kn109)(1\leqslant k\leqslant n\leqslant 10^9),含义见“题目描述”。

输出格式

对于每组测试数据,输出一行一个字符串。若存在符合题意的排列,输出 Yes\texttt{Yes};否则,输出 No\texttt{No}

你可以以任意的大小写输出 Yes\texttt{Yes}No\texttt{No}(例如,YES\texttt{YES}yEs\texttt{yEs}yes\texttt{yes} 都会被视作合法的输出)。

样例解释

对于第一组测试数据,能够证明不存在任何符合题意的排列。

对于第二组测试数据,[1,2,3,4][1,2,3,4] 是一个符合题意的排列。其所有长度为 22 的子区间分别为 [1,2],[2,3],[3,4][1,2],[2,3],[3,4],它们的权值分别为 3,5,73,5,7,具有相同的奇偶性。

对于第三组测试数据,[1,2,3,5,4][1,2,3,5,4] 是一个符合题意的排列。其所有长度为 33 的子区间分别为 [1,2,3],[2,3,5],[3,5,4][1,2,3],[2,3,5],[3,5,4],它们的权值分别为 6,10,126,10,12,具有相同的奇偶性。

3
3 1
4 2
5 3
No
Yes
Yes

提示

In the first test case, it can be shown that there does not exist any valid permutation.

In the second test case, [1,2,3,4][1,2,3,4] is one of the valid permutations. Its subsegments of length 22 are [1,2],[2,3],[3,4][1,2],[2,3],[3,4]. Their values are 3,5,73,5,7, respectively. They share the same parity.

In the third test case, [1,2,3,5,4][1,2,3,5,4] is one of the valid permutations. Its subsegments of length 33 are [1,2,3],[2,3,5],[3,5,4][1,2,3],[2,3,5],[3,5,4]. Their values are 6,10,126,10,12, respectively. They share the same parity.