luogu#P7439. 「KrOI2021」Feux Follets 弱化版

    ID: 11441 远端评测题 1500ms 512MiB 尝试: 1 已通过: 0 难度: 7 上传者: 标签>动态规划dp数论数学递推O2优化置换组合数学排列组合二项式定理生成函数微积分初步导数快速傅里叶变换,FFT快速数论变换 NTT

「KrOI2021」Feux Follets 弱化版

题目描述

cycπ\text{cyc}_\pi 将长为 nn 的排列 π\pi 当成置换时所能分解成的循环个数。给定两个整数 n,kn,k 和一个 k1k-1 次多项式,求:

πF(cycπ)\sum\limits_{\pi}F(\text{cyc}_{\pi})

其中 π\pi 是长度为 nn 且不存在位置 ii 使得 πi=i\pi_i=i 的排列。

输入格式

第一行两个整数,表示 nnkk

第二行 kk 个整数,从低到高给出多项式的系数。

输出格式

一行一个整数,表示答案对 998244353998244353 取模的值。

3 2
0 1
2
6 4
11 43 27 7
53070
6 4
9 72 22 7
60990

提示

数据范围

对于 100%100\% 的数据,1n,k1051\leq n,k\leq 10^5