loj#P6231. GCD & XOR

GCD & XOR

题目描述

给定一个正整数序列 AA 和一个定值 kk

求其子序列 AlrA_{l\cdots r},使得 $\gcd(A_{l\cdots r})\cdot(A_l\ \mathrm{xor} \ A_{l+1}\ \mathrm{xor} \cdots \mathrm{xor} \ A_r)=k$。若无解,输出 no solution

输入格式

第一行一个整数 nn,表示 AA 的长度。
第二行 nn 个整数 A1nA_{1\cdots n}
第三行一个整数 kk

输出格式

输出两个整数 l,rl,r 表示答案,如果答案不唯一,输出字典序最小的一个。

5
2 4 6 8 10
20
2 4

数据范围与提示

n105,ai1012,k1018n\leq10^5,a_i\leq 10^{12},k\leq 10^{18}

这题解法挺多,如果瞬间水过就下载附加文件看看题解吧

P.S. 这是原题,我只是一个搬运工。