loj#P550. 「LibreOJ Round #8」Matching

「LibreOJ Round #8」Matching

Description

Given a grid with nn rows and mm columns, in this grid, you can choose two different grid points and match them into a pair. Notice that a point can only be matched with no more than one point. It means unmatched points are allowed. We define a weight function f(A,B)f(A, B) for a pair of points A,BA, B as the following form:

$$\begin{aligned} dx &= \left|x_A - x_B\right| \\ dy &= \left|y_A - y_B\right| \\ f(A, B) &= \begin{cases} dx + dy & , dx + dy \geq k \\ 0 & , dx + dy < k \end{cases} \end{aligned} $$

The weight of a possible matching scheme is defined as the sum of weights that the matching pairs given. Your task is to calculate the maximum possible weight of all matching schemes.

Input Format

Read from the standard input.

The first line contains a single integer TT which means the number of the test cases.

Each of the following TT lines contains three integers n,m,kn, m, k which means the height and the width of the grid, and the constant kk in the weight function.

Output Format

Write to the standard output.

For each test case, output a line containing a single integer — the maximum of the weight of possible matching plans.

4
1 1 0
1 2 0
2 2 1
2 3 1
0
1
4
7
6
23 66 12
233 666 123
2333 6666 1234
23333 6666 1234
2333 66666 1234
23333 66666 12345
33759
34876089
34987610889
1166494448889
2682884270889
34998761108889
4
1 1 0
1 2 0
2 2 1
2 3 1
0
1
4
7
6
23 66 12
233 666 123
2333 6666 1234
23333 6666 1234
2333 66666 1234
23333 66666 12345
33759
34876089
34987610889
1166494448889
2682884270889
34998761108889

Constraints

For all test cases, 1T1051 \leq T \leq 10^51n,m1061 \leq n,m \leq 10^60kmin(n,m)10 \leq k \leq \min(n, m) - 1.

Detailed constraints are as follows (blank grids denote the same constraints as mentioned above):

Subtask# Score (percentage) TT n,mn, m Special Constraints
11 1010 20\leq 20 2000\leq 2000 n2n \leq 2
22 1515 5\leq 5 8\leq 8 n×m10n \times m \leq 10 and k=min(n,m)1k = \min(n, m) - 1
33 2525 3\leq 3 16\leq 16 -
44 1818 100\leq 100 5000\leq 5000 n=mn = m and n0(mod2)n \equiv 0 \pmod 2
55 3232 105\leq 10^5 106\leq 10^6 -