codeforces#P468E. Permanent

    ID: 27108 远端评测题 2000ms 512MiB 尝试: 0 已通过: 0 难度: 10 上传者: 标签>dpgraph matchingsmathmeet-in-the-middle*3100

Permanent

Description

Little X has solved the #P-complete problem in polynomial time recently. So he gives this task to you.

There is a special n × n matrix A, you should calculate its permanent modulo 1000000007 (109 + 7). The special property of matrix A is almost all its elements equal to 1. Only k elements have specified value.

You can find the definition of permanent at the link: https://en.wikipedia.org/wiki/Permanent

The first line contains two space-separated integers n, k (1 ≤ n ≤ 105; 1 ≤ k ≤ 50).

The next k lines contain the description of the matrix. The i-th line contains three space-separated integers xi, yi, wi (1 ≤ xi,  yi ≤  n; 0  ≤  wi  ≤ 109). These numbers denote that Axi, yi = wi. All the elements of the matrix except of the given elements are equal to 1.

It's guaranteed that all the positions (xi, yi) are distinct.

Print the permanent of the matrix modulo 1000000007 (109  +  7).

Input

The first line contains two space-separated integers n, k (1 ≤ n ≤ 105; 1 ≤ k ≤ 50).

The next k lines contain the description of the matrix. The i-th line contains three space-separated integers xi, yi, wi (1 ≤ xi,  yi ≤  n; 0  ≤  wi  ≤ 109). These numbers denote that Axi, yi = wi. All the elements of the matrix except of the given elements are equal to 1.

It's guaranteed that all the positions (xi, yi) are distinct.

Output

Print the permanent of the matrix modulo 1000000007 (109  +  7).

Samples

3 1
1 1 2

8

10 10
3 3 367056794
6 2 124561273
1 3 46718146
6 9 415916869
10 5 985968336
3 1 526792265
1 4 386357058
10 4 349304187
2 7 102032499
3 6 502679075

233333333