bzoj#P4572. [Scoi2016]围棋

[Scoi2016]围棋

题目描述

近日,谷歌研发的围棋 AI—AlphaGo 以 4:1 的比分战胜了曾经的世界冠军李世石,这是人工智能领域的又一里程碑。

与传统的搜索式 AI 不同,AlphaGo 使用了最近十分流行的卷积神经网络模型。
在卷积神经网络模型中,棋盘上每一块特定大小的区域都被当做一个窗口。例如棋盘的大小为 5×65 \times 6,窗口大小为 2×42 \times 4,那么棋盘中共有 1212个窗口。
此外,模型中预先设定了一些模板,模板的大小与窗口的大小是一样的。
下图展现了一个 5×65 \times 6 的棋盘和两个 2×42 \times 4 的模板。

对于一个模板,只要棋盘中有某个窗口与其完全匹配,我们称这个模板是被激活的,否则称这个模板没有被激活。
例如图中第一个模板就是被激活的,而第二个模板就是没有被激活的。

我们要研究的问题是:对于给定的模板,有多少个棋盘可以激活它。

为了简化问题,我们抛开所有围棋的基本规则,只考虑一个n \times m的棋盘,每个位置只能是黑子、白子或无子三种情况,换句话说,这样的棋盘共有 3n×m3^{n \times m} 种。

此外,我们会给出 qq2×c2 \times c 的模板。我们希望知道,对于每个模板,有多少种棋盘可以激活它。强调:模板一定是两行的。

输入格式

输入数据的第一行包含四个正整数 n,m,cn,m,cqq,分别表示棋盘的行数、列数、模板的列数和模板的数量。
随后 2×q2 \times q 行,每连续两行描述一个模板。其中,每行包含 cc 个字符,字符一定是 WBX 中的一个,表示白子、黑子或无子三种情况的一种。

输出格式

输出应包含 qq 行,每行一个整数,表示符合要求的棋盘数量。

由于答案可能很大,你只需要输出答案对 109+710^9+7 取模后的结果即可。

3 1 1 2
B
W
B
B
6
5

数据规模与约定

对于 100/100/% 的数据,n100n \leq 100m12m \leq 12c6c \leq 6q5q \leq 5