bzoj#P2109. [NOI2010]航空管制
[NOI2010]航空管制
题目描述
世博期间,上海的航空客运量大大超过了平时,随之而来的航空管制也频频发生。最近,小 X 就因为航空管制,连续两次在机场被延误超过了两小时。对此,小 X 表示很不满意。
在这次来烟台的路上,小 X 不幸又一次碰上了航空管制。于是小 X 开始思考关于航空管制的问题。
假设目前被延误航班共有 个,编号为 至 。机场只有一条起飞跑道,所有的航班需按某个顺序依次起飞(称这个顺序为起飞序列)。定义一个航班的起飞序号为该航班在起飞序列中的位置,即是第几个起飞的航班。
起飞序列还存在两类限制条件:
-
第一类(最晚起飞时间限制):编号为 的航班起飞序号不得超过 。
-
第二类(相对起飞顺序限制):存在一些相对起飞顺序限制 ,表示航班 的起飞时间必须早于航班 ,即航班 的起飞序号必须小于航班 的起飞序号。
小 X 思考的第一个问题是,若给定以上两类限制条件,是否可以计算出一个可行的起飞序列。第二个问题则是,在考虑两类限制条件的情况下,如何求出每个航班在所有可行的起飞序列中的最小起飞序号。
输入格式
第一行包含两个正整数 和 , 表示航班数目, 表示第二类限制条件(相对起飞顺序限制)的数目。
第二行包含 个正整数 。
接下来 行,每行两个正整数 和 ,表示一对相对起飞顺序限制 ,其中 ,表示航班 必须先于航班 起飞。
输出格式
第一行包含 个整数,表示一个可行的起飞序列,相邻两个整数用空格分隔。输入数据保证至少存在一个可行的起飞序列。如果存在多个可行的方案,输出任意一个即可。
第二行包含 个整数 ,其中 表示航班 可能的最小起飞序号,相邻两个整数用空格分隔。
样例输入 #1
5 5
4 5 2 5 4
1 2
3 2
5 1
3 4
3 1
样例输出 #1
3 5 1 4 2
3 4 1 2 1
样例说明 #1
起飞序列 满足了所有的限制条件,所有满足条件的起飞序列有:
$3\ 4\ 5\ 1\ 2,3\ 5\ 1\ 2\ 4,3\ 5\ 1\ 4\ 2,3\ 5\ 4\ 1\ 2,5\ 3\ 1\ 2\ 4,5\ 3\ 1\ 4\ 2,5\ 3\ 4\ 1\ 2$
由于存在 和 两个限制,航班 只能安排在航班 和 之后,故最早起飞时间为 ,其他航班类似。
样例输入 #2
5 0
3 3 3 5 5
样例输出 #2
3 2 1 5 4
1 1 1 4 4
样例说明 #2
虽然航班 没有相对起飞顺序限制,但是由于航班 都必须安排在前 个起飞,所以 最早只能安排在第 个起飞。
数据规模与约定
对于 数据:。
对于 数据:。
对于 数据:。