atcoder#ARC117E. [ARC117E] Zero-Sum Ranges 2

[ARC117E] Zero-Sum Ranges 2

Score : 900900 points

Problem Statement

How many different sequences of length 2N2N, A=(A1,A2,,A2N)A = (A_1, A_2, \dots, A_{2N}), satisfy both of the following conditions?

  • The sequence AA contains NN occurrences of +1+1 and NN occurrences of 1-1.
  • There are exactly KK pairs of ll and rr (1lr2N)(1 \leq l \leq r \leq 2N) such that Al+Al+1++Ar=0A_l + A_{l+1} + \cdots + A_r = 0.

Constraints

  • 1N301 \leq N \leq 30
  • 1KN21 \leq K \leq N^2
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN KK

Output

Print the number of different sequences that satisfy the conditions in Problem Statement. The answer always fits into the signed 6464-bit integer type.

1 1
2

For N=1,K=1N = 1, K = 1, two sequences below satisfy the conditions:

  • A=(+1,1)A = (+1, -1)
  • A=(1,+1)A = (-1, +1)
2 3
2

For N=2,K=3N = 2, K = 3, two sequences below satisfy the conditions:

  • A=(+1,1,1,+1)A = (+1, -1, -1, +1)
  • A=(1,+1,+1,1)A = (-1, +1, +1, -1)
3 7
6

For N=3,K=7N = 3, K = 7, six sequences below satisfy the conditions:

  • A=(+1,1,+1,1,1,+1)A = (+1, -1, +1, -1, -1, +1)
  • A=(+1,1,1,+1,+1,1)A = (+1, -1, -1, +1, +1, -1)
  • A=(+1,1,1,+1,1,+1)A = (+1, -1, -1, +1, -1, +1)
  • A=(1,+1,+1,1,+1,1)A = (-1, +1, +1, -1, +1, -1)
  • A=(1,+1,+1,1,1,+1)A = (-1, +1, +1, -1, -1, +1)
  • A=(1,+1,1,+1,+1,1)A = (-1, +1, -1, +1, +1, -1)
8 24
568
30 230
761128315856702
25 455
0

For N=25,K=455N = 25, K = 455, no sequences satisfy the conditions.