Score : 300 points
Problem Statement
Given positive integers N and M, find the remainder when ⌊M10N⌋ is divided by M.
What is $\lfloor x \rfloor$?
$$\lfloor x \rfloor$$$$x$$- $\lfloor 2.5 \rfloor = 2$
- $\lfloor 3 \rfloor = 3$
- $\lfloor 9.9999999 \rfloor = 9$
- $\lfloor \frac{100}{3} \rfloor = \lfloor 33.33... \rfloor = 33$
## Constraints
- $1 \leq N \leq 10^{18}$
- $1 \leq M \leq 10000$
## Input
Input is given from Standard Input in the following format:
> $N$ $M$
## Output
Print the answer.
```input1
1 2
```
```output1
1
```
We have $\lfloor \frac{10^1}{2} \rfloor = 5$, so we should print the remainder when $5$ is divided by $2$, that is, $1$.
```input2
2 7
```
```output2
0
```
```input3
1000000000000000000 9997
```
```output3
9015
```$$