atcoder#ARC090C. [ARC090E] Avoiding Collision

[ARC090E] Avoiding Collision

Score : 700700 points

Problem Statement

We have a graph with NN vertices and MM edges, and there are two people on the graph: Takahashi and Aoki.

The ii-th edge connects Vertex UiU_i and Vertex ViV_i. The time it takes to traverse this edge is DiD_i minutes, regardless of direction and who traverses the edge (Takahashi or Aoki).

Takahashi departs Vertex SS and Aoki departs Vertex TT at the same time. Takahashi travels to Vertex TT and Aoki travels to Vertex SS, both in the shortest time possible. Find the number of the pairs of ways for Takahashi and Aoki to choose their shortest paths such that they never meet (at a vertex or on an edge) during the travel, modulo 109+710^9 + 7.

Constraints

  • 1N1001 \leq N \leq 100 000000
  • 1M2001 \leq M \leq 200 000000
  • 1S,TN1 \leq S, T \leq N
  • STS \neq T
  • 1Ui,ViN1 \leq U_i, V_i \leq N (1iM1 \leq i \leq M)
  • 1Di1091 \leq D_i \leq 10^9 (1iM1 \leq i \leq M)
  • If iji \neq j, then (Ui,Vi)(Uj,Vj)(U_i, V_i) \neq (U_j, V_j) and (Ui,Vi)(Vj,Uj)(U_i, V_i) \neq (V_j, U_j).
  • UiViU_i \neq V_i (1iM1 \leq i \leq M)
  • DiD_i are integers.
  • The given graph is connected.

Input

Input is given from Standard Input in the following format:

NN MM

SS TT

U1U_1 V1V_1 D1D_1

U2U_2 V2V_2 D2D_2

::

UMU_M VMV_M DMD_M

Output

Print the answer.

4 4
1 3
1 2 1
2 3 1
3 4 1
4 1 1
2

There are two ways to choose shortest paths that satisfies the condition:

  • Takahashi chooses the path 1231 \rightarrow 2 \rightarrow 3, and Aoki chooses the path 3413 \rightarrow 4 \rightarrow 1.
  • Takahashi chooses the path 1431 \rightarrow 4 \rightarrow 3, and Aoki chooses the path 3213 \rightarrow 2 \rightarrow 1.
3 3
1 3
1 2 1
2 3 1
3 1 2
2
3 3
1 3
1 2 1
2 3 1
3 1 2
2
8 13
4 2
7 3 9
6 2 3
1 6 4
7 6 9
3 8 9
1 2 2
2 8 12
8 6 9
2 5 5
4 2 18
5 3 7
5 1 515371567
4 8 6
6