atcoder#ABC278E. [ABC278E] Grid Filling

[ABC278E] Grid Filling

Score : 500500 points

Problem Statement

You have a grid with HH rows from top to bottom and WW columns from left to right. We denote by (i,j)(i, j) the square at the ii-th row from the top and jj-th column from the left. (i,j) (1iH,1jW)(i,j)\ (1\leq i\leq H,1\leq j\leq W) has an integer Ai,jA _ {i,j} between 11 and NN written on it.

You are given integers hh and ww. For all pairs (k,l)(k,l) such that 0kHh0\leq k\leq H-h and 0lWw0\leq l\leq W-w, solve the following problem:

  • If you black out the squares (i,j)(i,j) such that k<ik+hk\lt i\leq k+h and l<jl+wl\lt j\leq l+w, how many distinct integers are written on the squares that are not blacked out?

Note, however, that you do not actually black out the squares (that is, the problems are independent).

Constraints

  • 1H,W,N3001 \leq H,W,N \leq 300
  • 1hH1 \leq h \leq H
  • 1wW1 \leq w \leq W
  • (h,w)(H,W)(h,w)\neq(H,W)
  • $1 \leq A _ {i,j} \leq N\ (1\leq i\leq H,1\leq j\leq W)$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

HH WW NN hh ww

A1,1A _ {1,1} A1,2A _ {1,2} \dots A1,WA _ {1,W}

A2,1A _ {2,1} A2,2A _ {2,2} \dots A2,WA _ {2,W}

\vdots

AH,1A _ {H,1} AH,2A _ {H,2} \dots AH,WA _ {H,W}

Output

Print the answers in the following format, where ansk,l\operatorname{ans}_{k,l} denotes the answer to (k,l)(k, l):

ans0,0\operatorname{ans} _ {0,0} ans0,1\operatorname{ans} _ {0,1} \dots ans0,Ww\operatorname{ans} _ {0,W-w}

ans1,0\operatorname{ans} _ {1,0} ans1,1\operatorname{ans} _ {1,1} \dots ans1,Ww\operatorname{ans} _ {1,W-w}

\vdots

ansHh,0\operatorname{ans} _ {H-h,0} ansHh,1\operatorname{ans} _ {H-h,1} \dots ansHh,Ww\operatorname{ans} _ {H-h,W-w}

3 4 5 2 2
2 2 1 1
3 2 5 3
3 4 4 3
4 4 3
5 3 4

The given grid is as follows:

For example, when (k,l)=(0,0)(k,l)=(0,0), four distinct integers 1,3,41,3,4, and 55 are written on the squares that are not blacked out, so 44 is the answer.

5 6 9 3 4
7 1 5 3 9 5
4 5 4 5 1 2
6 1 6 2 9 7
4 7 1 5 8 8
3 4 3 3 5 3
8 8 7
8 9 7
8 9 8
9 12 30 4 7
2 2 2 2 2 2 2 2 2 2 2 2
2 2 20 20 2 2 5 9 10 9 9 23
2 29 29 29 29 29 28 28 26 26 26 15
2 29 29 29 29 29 25 25 26 26 26 15
2 29 29 29 29 29 25 25 8 25 15 15
2 18 18 18 18 1 27 27 25 25 16 16
2 19 22 1 1 1 7 3 7 7 7 7
2 19 22 22 6 6 21 21 21 7 7 7
2 19 22 22 22 22 21 21 21 24 24 24
21 20 19 20 18 17
20 19 18 19 17 15
21 19 20 19 18 16
21 19 19 18 19 18
20 18 18 18 19 18
18 16 17 18 19 17