atcoder#ABC259G. [ABC259G] Grid Card Game

[ABC259G] Grid Card Game

Score : 600600 points

Problem Statement

There are H×WH \times W cards on a grid of squares with HH rows and WW columns. For each pair of integers (i,j)(i, j) such that 1iH,1jW1 \leq i \leq H, 1 \leq j \leq W, the card at the ii-th row and jj-th column has an integer Ai,jA_{i, j} written on it.

Takahashi and Aoki will cooperate to play a game, which consists of the following steps.

  • First, Takahashi chooses some of the HH rows (possibly none or all) and places a red token on each card in the chosen rows.
  • Second, Aoki chooses some of the WW columns (possibly none or all) and places a blue token on each card in the chosen columns.
  • Now, they compute their score as follows.- If there is a card with a negative integer that has both red and blue tokens placed on it, the play is a "total failure"; the score is 10100-10^{100}.
    • Otherwise, they collect all cards that have one or more tokens placed on them. The score is the sum of the integers written on the collected cards.

Find their maximum possible score.

Constraints

  • 1H,W1001 \leq H, W \leq 100
  • 109Ai,j109-10^9 \leq A_{i, j} \leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

HH WW

A1,1A_{1, 1} A1,2A_{1, 2} \ldots A1,WA_{1, W}

A2,1A_{2, 1} A2,2A_{2, 2} \ldots A2,WA_{2, W}

\vdots

AH,1A_{H, 1} AH,2A_{H, 2} \ldots AH,WA_{H, W}

Output

Print the answer.

2 3
-9 5 1
6 -2 4
9

If Takahashi chooses just the 22-nd row and Aoki chooses just the 33-rd column, they collect four cards, for a score of 6+(2)+1+4=96 + (-2) + 1 + 4 = 9. This is the maximum possible.

15 20
-14 74 -48 38 -51 43 5 37 -39 -29 80 -44 -55 59 17 89 -37 -68 38 -16
14 31 43 -73 49 -7 -65 13 -40 -45 36 88 -54 -43 99 87 -94 57 -22 31
-85 67 -46 23 95 68 55 17 -56 51 -38 64 32 -19 65 -62 76 66 -53 -16
35 -78 -41 35 -51 -85 24 -22 45 -53 82 -30 39 19 -52 -3 -11 -67 -33 71
-75 45 -80 -42 -31 94 59 -58 39 -26 -94 -60 98 -1 21 25 0 -86 37 4
-41 66 -53 -55 55 98 23 33 -3 -27 7 -53 -64 68 -33 -8 -99 -15 50 40
66 53 -65 5 -49 81 45 1 33 19 0 20 -46 -82 14 -15 -13 -65 68 -65
50 -66 63 -71 84 51 -91 45 100 76 -7 -55 45 -72 18 40 -42 73 69 -36
59 -65 -30 89 -10 43 7 72 93 -70 23 86 81 16 25 -63 73 16 34 -62
22 -88 27 -69 82 -54 -92 32 -72 -95 28 -25 28 -55 97 87 91 17 21 -95
62 39 -65 -16 -84 51 62 -44 -60 -70 8 69 -7 74 79 -12 62 -86 6 -60
-72 -6 -79 -28 39 -42 -80 -17 -95 -28 -66 66 36 86 -68 91 -23 70 58 2
-19 -20 77 0 65 -94 -30 76 55 57 -8 59 -43 -6 -15 -83 8 29 16 34
79 40 86 -92 88 -70 -94 -21 50 -3 -42 -35 -79 91 96 -87 -93 -6 46 27
-94 -49 71 37 91 47 97 1 21 32 -100 -4 -78 -47 -36 -84 -61 86 -51 -9
1743