atcoder#ABC253F. [ABC253F] Operations on a Matrix

[ABC253F] Operations on a Matrix

Score : 500500 points

Problem Statement

We have an N×MN \times M matrix, whose elements are initially all 00.

Process QQ given queries. Each query is in one of the following formats.

  • 1 l r x : Add xx to every element in the ll-th, (l+1)(l+1)-th, \ldots, and rr-th column.
  • 2 i x: Replace every element in the ii-th row with xx.
  • 3 i j: Print the (i,j)(i, j)-th element.

Constraints

  • 1N,M,Q2×1051 \leq N, M, Q \leq 2 \times 10^5
  • Every query is in one of the formats listed in the Problem Statement.
  • For each query in the format 1 l r x, 1lrM1 \leq l \leq r \leq M and 1x1091 \leq x \leq 10^9.
  • For each query in the format 2 i x, 1iN1 \leq i \leq N and 1x1091 \leq x \leq 10^9.
  • For each query in the format 3 i j, 1iN1 \leq i \leq N and 1jM1 \leq j \leq M.
  • At least one query in the format 3 i j is given.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM QQ

Query1\mathrm{Query}_1

\vdots

QueryQ\mathrm{Query}_Q

Queryi\mathrm{Query}_i, which denotes the ii-th query, is in one of the following formats:

11 ll rr xx

22 ii xx

33 ii jj

Output

For each query in the format 3 i j, print a single line containing the answer.

3 3 9
1 1 2 1
3 2 2
2 3 2
3 3 3
3 3 1
1 2 3 3
3 3 2
3 2 3
3 1 2
1
2
2
5
3
4

The matrix transitions as follows.

$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & 2 & 2 \\ \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 3 \\ 1 & 4 & 3 \\ 2 & 5 & 5 \\ \end{pmatrix}$

1 1 10
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
1 1 1 1000000000
3 1 1
9000000000
10 10 10
1 1 8 5
2 2 6
3 2 1
3 4 7
1 5 9 7
3 3 2
3 2 8
2 8 10
3 8 8
3 1 10
6
5
5
13
10
0