atcoder#ABC240G. [ABC240G] Teleporting Takahashi

[ABC240G] Teleporting Takahashi

Score : 600600 points

Problem Statement

Takahashi is in the square (0,0,0)(0, 0, 0) in an infinite three-dimensional grid.

He can teleport between squares. From the square (x,y,z)(x, y, z), he can move to (x+1,y,z)(x+1, y, z), (x1,y,z)(x-1, y, z), (x,y+1,z)(x, y+1, z), (x,y1,z)(x, y-1, z), (x,y,z+1)(x, y, z+1), or (x,y,z1)(x, y, z-1) in one teleport. (Note that he cannot stay in the square (x,y,z)(x, y, z).)

Find the number of routes ending in the square (X,Y,Z)(X, Y, Z) after exactly NN teleports.

In other words, find the number of sequences of N+1N+1 triples of integers $\big( (x_0, y_0, z_0), (x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_N, y_N, z_N)\big)$ that satisfy all three conditions below.

  • (x0,y0,z0)=(0,0,0)(x_0, y_0, z_0) = (0, 0, 0).
  • (xN,yN,zN)=(X,Y,Z)(x_N, y_N, z_N) = (X, Y, Z).
  • xixi1+yiyi1+zizi1=1|x_i-x_{i-1}| + |y_i-y_{i-1}| + |z_i-z_{i-1}| = 1 for each i=1,2,,Ni = 1, 2, \ldots, N.

Since the number can be enormous, print it modulo 998244353998244353.

Constraints

  • 1N1071 \leq N \leq 10^7
  • 107X,Y,Z107-10^7 \leq X, Y, Z \leq 10^7
  • NN, XX, YY, and ZZ are integers.

Input

Input is given from Standard Input in the following format:

NN XX YY ZZ

Output

Print the number modulo 998244353998244353.

3 2 0 -1
3

There are three routes ending in the square (2,0,1)(2, 0, -1) after exactly 33 teleports:

  • $(0, 0, 0) \rightarrow (1, 0, 0) \rightarrow (2, 0, 0) \rightarrow(2, 0, -1)$
  • $(0, 0, 0) \rightarrow (1, 0, 0) \rightarrow (1, 0, -1) \rightarrow(2, 0, -1)$
  • $(0, 0, 0) \rightarrow (0, 0, -1) \rightarrow (1, 0, -1) \rightarrow(2, 0, -1)$
1 0 0 0
0

Note that exactly NN teleports should be performed, and they do not allow him to stay in the same position.

314 15 92 65
106580952

Be sure to print the number modulo 998244353998244353.