atcoder#ABC207E. [ABC207E] Mod i

[ABC207E] Mod i

Score : 500500 points

Problem Statement

Given is a sequence AA of NN numbers. Find the number of ways to separate AA into some number of non-empty contiguous subsequence B1,B2,,BkB_1, B_2, \ldots, B_k so that the following condition is satisfied:

  • For every i (1ik)i\ (1 \leq i \leq k), the sum of elements in BiB_i is divisible by ii.

Since the count can be enormous, print it modulo (109+7)(10^9+7).

Constraints

  • 1N30001 \leq N \leq 3000
  • 1Ai10151 \leq A_i \leq 10^{15}
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN

A1A_1 A2A_2 \ldots ANA_N

Output

Print the number of ways to separate the sequence so that the condition in the Problem Statement is satisfied, modulo (109+7)(10^9+7).

4
1 2 3 4
3

We have three ways to separate the sequence, as follows:

  • (1),(2),(3),(4)(1),(2),(3),(4)
  • (1,2,3),(4)(1,2,3),(4)
  • (1,2,3,4)(1,2,3,4)
5
8 6 3 3 3
5
10
791754273866483 706434917156797 714489398264550 918142301070506 559125109706263 694445720452148 648739025948445 869006293795825 718343486637033 934236559762733
15

The values in input may not fit into a 3232-bit integer type.