Score : 300 points
Problem Statement
For an integer x not less than 0, we define g1(x),g2(x),f(x) as follows:
- g1(x)= the integer obtained by rearranging the digits in the decimal notation of x in descending order
- g2(x)= the integer obtained by rearranging the digits in the decimal notation of x in ascending order
- f(x)=g1(x)−g2(x)
For example, we have g1(314)=431, g2(3021)=123, f(271)=721−127=594. Note that the leading zeros are ignored.
Given integers N,K, find aK in the sequence defined by a0=N, ai+1=f(ai) (i≥0).
Constraints
- 0≤N≤109
- 0≤K≤105
- All values in input are integers.
Input is given from Standard Input in the following format:
N K
Output
Print aK.
314 2
693
We have:
- a0=314
- a1=f(314)=431−134=297
- a2=f(297)=972−279=693
1000000000 100
0
We have:
- a0=1000000000
- a1=f(1000000000)=1000000000−1=999999999
- a2=f(999999999)=999999999−999999999=0
- a3=f(0)=0−0=0
- ⋮
6174 100000
6174