atcoder#ABC163D. [ABC163D] Sum of Large Numbers
[ABC163D] Sum of Large Numbers
Score : points
Problem Statement
We have integers: , , ..., .
We will choose or more of these integers. Find the number of possible values of the sum of the chosen numbers, modulo .
Constraints
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
Output
Print the number of possible values of the sum, modulo .
3 2
10
The sum can take values, as follows:
- $(10^{100})+(10^{100}+3)=(10^{100}+1)+(10^{100}+2)=2\times 10^{100}+3$
- $(10^{100})+(10^{100}+1)+(10^{100}+2)=3\times 10^{100}+3$
- $(10^{100})+(10^{100}+1)+(10^{100}+3)=3\times 10^{100}+4$
- $(10^{100})+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+5$
- $(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=3\times 10^{100}+6$
- $(10^{100})+(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=4\times 10^{100}+6$
200000 200001
1
We must choose all of the integers, so the sum can take just value.
141421 35623
220280457