1 条题解

  • 4
    @ 2021-5-30 14:14:08

    出于能恢复的特性 , 炸掉一个点会使某个中枢结点断电的case只可能是以 11 为源点的所有支配点。

    所以求出支配树然后在上面 dp 就好了。

    30分就是给 DAG 上求支配树的,比较好写吧。

    30pts:

    onDAG,O(nlogn+m)on DAG, \mathcal{O(n \log n + m)} .

    #include <cstdio>
    #include <iostream>
    #include <vector>
    #include <queue>
    #define rep(i,a,b) for(int i=(a);i<=(b);++i)
    #define rii(x,y) ri(x), ri(y)
    #define ri3(x,y,z) ri(x), ri(y), ri(z)
    #define rz resize
    #define pb push_back
    
    using namespace std;
    
    typedef vector<int> VI;
    typedef long long ll;
    typedef long double ldb;
    typedef double db;
    
    inline void ri(int &x) {
        x = 0; char ch; int f = 1;
        do { ch = getchar(); if(ch == '-') f = -1; } while( ch < '0' || ch > '9' );
        do { x = (x<<3) + (x<<1) + (ch&15), ch = getchar(); } while( ch >= '0' && ch <= '9' );
        x *= f;
    }
    
    VI ind, dep;
    vector< VI > G, _G, DOM;
    
    queue<int> q;
    vector< VI > fa;
    
    int lca(int u, int v) {
        if(dep[u] < dep[v]) swap(u, v);
        for(int i = 19; ~i; --i) if(dep[fa[u][i]] >= dep[v]) u = fa[u][i];
        if(u == v) return u;
        for(int i = 19; ~i; --i) if(fa[u][i] != fa[v][i]) u = fa[u][i], v = fa[v][i];
        return fa[u][0];
    }
    
    void topo() {
        q.push(1);
        while(!q.empty()) {
            int cur = q.front(); q.pop();
            int pre = 0;
            if(_G[cur].size()) {
                pre = _G[cur][0];
                for(int i = 1; i < _G[cur].size(); ++i) pre = lca(pre, _G[cur][i]);
            }
            fa[cur][0] = pre; dep[cur] = dep[pre] + 1;
            DOM[pre].pb(cur);
            for(int i = 1; i < 20; ++i) fa[cur][i] = fa[fa[cur][i-1]][i-1];
            for(int ver : G[cur]) if(--ind[ver] == 0) q.push(ver);
        }
    }
    
    VI vital, f, pt;
    void dfs(int cur) {
        f[cur] = 0;
        for(int ver : DOM[cur]) {
            dfs(ver); f[cur] += f[ver];
        }
        f[cur] = pt[cur] ? vital[cur] : min(vital[cur], f[cur]);
    }
    
    int main() {
        int n, m, q, u, v;
        ri3(n, m, q);
        vital.rz(n + 1); ind.rz(n + 1); fa.rz(n + 1); dep.rz(n + 1);
        G.rz(n + 1); _G.rz(n + 1); pt.rz(n + 1); DOM.rz(n + 1); f.rz(n + 1);
    
        rep(i,0,n) fa[i].rz(20);
        rep(i,2,n) ri(vital[i]); vital[1] = 2e9+7;
    
        rep(i,1,m) {
            rii(u, v);
            G[u].pb(v);
            _G[v].pb(u);
            ++ind[v];
        }
    
        rep(qr,1,q) { ri(u); pt[u] = 1;}
        topo();
        dfs(1);
        printf("%d\n", f[1]);
        return 0;
    }
    

    100pts:

    O((n+m)α(n))\mathcal{O((n+m)\alpha(n))} .

    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <algorithm>
    #include <iostream>
    #define rep(i,a,b) for(int i=a;i<=(b);++i)
    #define per(i,a,b) for(int i=a;i>=(b);--i)
    #define repp(i,a,b) for(int i=a;i<(b);++i)
    #define perr(i,a,b) for(int i=a;i>(b);--i)
    #define pb push_back
    #define rz resize
    #define VI vector<int>
    #define rii(x,y) ri(x), ri(y)
    #define ri3(x,y,z) ri(x), ri(y), ri(z)
    
    using namespace std;
    
    inline void ri(int &x) {
        x = 0; char ch; int f = 1;
        do { ch = getchar(); if(ch == '-') f = -1; } while( ch < '0' || ch > '9' );
        do { x = (x<<3) + (x<<1) + (ch&15), ch = getchar(); } while( ch >= '0' && ch <= '9' );
        x *= f;
    }
    
    vector< VI > G, _G, DOM;
    VI dfn, idfn, fa;
    int dfs_clock = 1;
    
    inline int minpt(int u, int v) {
        return dfn[u] < dfn[v] ? u : v;
    }
    
    VI par, dat, sdom, idom;
    vector< VI > buc;
    
    void dfs(int pre, int cur) {
        idfn[dfs_clock] = cur; dfn[cur] = dfs_clock++;
        fa[cur] = pre;
        for(int ver : G[cur]) if(!dfn[ver]) dfs(cur, ver);
    }
    
    int find(int x) {
        if(par[x] == x) return x;
        int p = find(par[x]);
        if(dfn[sdom[dat[x]]] > dfn[sdom[dat[par[x]]]]) dat[x] = dat[par[x]];
        return par[x] = p;
    }
    
    int eval(int x) { find(x); return dat[x]; }
    
    void lengauer_tarjan(int n, int r) {
        dfs_clock = 1;
        dfs(0, r);
        --dfs_clock;
        for(int i = 1; i <= n; ++i) par[i] = dat[i] = sdom[i] = i;
        for(int i = n; i > 1; --i) {
            int cur = idfn[i];
            for(int ver : _G[cur]) {
                if(!dfn[ver]) continue;
                int ev = eval(ver);
                if(dfn[sdom[cur]] > dfn[sdom[ev]]) sdom[cur] = sdom[ev];
            }
            buc[sdom[cur]].pb(cur); par[cur] = fa[cur];
            for(int ver : buc[fa[cur]]) {
                int ev = eval(ver);
                if(sdom[ev] == fa[cur]) idom[ver] = fa[cur];
                else idom[ver] = ev;
            }
            buc[fa[cur]].clear();
        }
        for(int i = 2; i <= dfs_clock; ++i) {
            int cur = idfn[i];
            if(idom[cur] != sdom[cur]) idom[cur] = idom[idom[cur]];
            DOM[idom[cur]].pb(cur);
        }
        idom[r] = 0;
    }
    
    
    VI vital, pt;
    VI f;
    void work(int cur) {
        f[cur] = 0;
        for(int ver : DOM[cur]) {
            work(ver);
            f[cur] += f[ver];
        }
        f[cur] = pt[cur] ? vital[cur] : min(f[cur], vital[cur]);
    }
    
    int main() {
        if(fopen("yl.in", "r")) {
            freopen("yl.in", "r", stdin);
            freopen("yl.out", "w", stdout);
        }
        int n, m, q, u, v;
        ri3(n, m, q);
        G.rz(n + 1); _G.rz(n + 1); DOM.rz(n + 1); dfn.rz(n + 1); idfn.rz(n + 1); fa.rz(n + 1); par.rz(n + 1); dat.rz(n + 1); sdom.rz(n + 1); idom.rz(n + 1); buc.rz(n + 1); vital.rz(n + 1); pt.rz(n + 1); f.rz(n + 1);
        rep(i,2,n) ri(vital[i]); vital[1] = 2e9 + 7;
        while(m--) {
            rii(u, v);
            G[u].pb(v);
            _G[v].pb(u);
        }
        lengauer_tarjan(n, 1);
        rep(i,1,q) {
            ri(u); pt[u] = 1;
        }
        work(1);
        printf("%d\n", f[1]);
        return 0;
    }
    
    

    信息

    ID
    137
    时间
    1000ms
    内存
    64MiB
    难度
    7
    标签
    递交数
    47
    已通过
    10
    上传者