11 条题解

  • 4
    @ 2022-2-2 17:03:34

    tg重点知识点:LCA

    文件头

    求LCA的基本方式:

    1. 在线法

    代表:倍增,rmq

    这里介绍倍增法。

    先预处理出每一个节点的 2k2^k 级祖先以及深度。

    求LCA时,先让两个节点深度相同,再从大到小枚举 kk ,如果 xxkk 级祖先不等于 yykk 级祖先就往上跳。

    因为我们跳的是LCA的下一层,所以要输出 xx00 级祖先。

    核心代码:

    vector<int> g[500001];
    int n,q;
    int depth[500001],f[500001][31];
    void dfs(int x, int fa)
    {
    	depth[x]=depth[fa]+1;
    	f[x][0]=fa;
    	For(i,1,log2(depth[x])+1)
    		f[x][i]=f[f[x][i-1]][i-1];
    	For(i,0,g[x].size()-1)
    		if(g[x][i]!=fa)
    			dfs(g[x][i],x);
    }
    int lca(int x, int y)
    {
    	if(depth[y]<depth[x]) swap(y,x);
    	while(depth[y]>depth[x]) y=f[y][(int)log2(depth[y]-depth[x])];
    	if(x==y) return x;
    	ForDown(k,log2(depth[y]),0)
    	{
    		if(f[x][k]!=f[y][k])
    		{
    			x=f[x][k],y=f[y][k];
    		}
    	}
    	return f[x][0];
    }
    signed main()
    {
    	read(n,q);
    	For(i,1,n-1)
    	{
    		int u,v;
    		read(u,v);
    		g[u].push_back(v);
    		g[v].push_back(u);
    	}
    	dfs(1,1);
    	//cout<<"wedrftgyhujikoswerdtfyguh"<<endl;
    	while(q--)
    	{
    		int x,y;
    		read(x,y);
    		write_with_endl(lca(x,y));
    	}
    	return 0;
    }
    

    复杂度 O(qlogn)O(qlogn)

    1. 离线法

    代表:tarjan

    把所有询问存下来,然后在回溯时将并查集中当前节点的“父亲”设为它的父节点。然后如果有一个询问的两个点都算过了,从并查集中找结果存进来。最后输出。

    核心代码:

    int n,m,s;
    struct Edge
    {
        int v,nxt;
    }query[1000001];
    int head[500001],cnt=0;
    vector<int> g[500001];
    int lca[1000001];
    void add(int x, int y)
    {
        query[++cnt]=(Edge){y,head[x]};
        head[x]=cnt;
    }
    
    bool used[500001];
    int f[500001];
    int find(int x)
    {
        return f[x]==x ? f[x] : f[x]=find(f[x]);
    }
    void tarjan(int x)
    {
        used[x]=1;
        For(i,0,g[x].size()-1)
        {
            if(used[g[x][i]]) continue;
            tarjan(g[x][i]);
            f[g[x][i]]=x;
        }
        for(int i=head[x];i;i=query[i].nxt)
        {
            if(used[query[i].v])
            {
                lca[i%2+i]=find(query[i].v);
            }
        }
    }
    
    int main()
    {
        read(n);read(m);read(s);
        For(i,1,n) f[i]=i;
        For(i,1,n-1)
        {
            int u,v;
            read(u);read(v);
            g[u].push_back(v);
            g[v].push_back(u);
        }
        For(i,1,m)
        {
            int u,v;
            read(u);read(v);
            add(u,v);
            add(v,u);
        }
        tarjan(s);
        For(i,1,m)
        {
            write(lca[2*i]);
            putchar('\n');
        }
        return0;
    }
    

    复杂度 O(n)O(n)

    信息

    ID
    121
    时间
    2000ms
    内存
    256MiB
    难度
    6
    标签
    递交数
    691
    已通过
    202
    上传者