10 条题解

  • 11
    @ 2021-10-6 20:41:44

    本题的核心思路:倍增。 如果暴力求LCA,要从两个节点开始,一步一步往根节点方向走,记录路径,再从路径最后(就是根节点)开始比较,比较什么时候后出现不同。代码如下:

    #include<bits/stdc++.h>
    using namespace std;
    
    const int MAXN=500000+5;
    const int MAXM=500000+5;
    
    int head[MAXN];
    int father[MAXN];
    bool visited[MAXM];
    int bianshu;
    
    struct edge
    {
    	int v,next;
    }g[2*MAXM];
    
    void addedge(int u,int v)
    {
    	g[++bianshu].next=head[u];
    	g[bianshu].v=v;
    	head[u]=bianshu;
    	return;
    }
    
    queue <int> q;
    int s;
    void bfs()
    {
    	q.push(s);
    	while(!q.empty())
    	{
    		int ppp=q.front();
    		q.pop();
    		for(int i=head[ppp];i;i=g[i].next)
    		{
    			if(!visited[g[i].v])
    			{
    				visited[g[i].v]=true;
    				father[g[i].v]=ppp;
    				q.push(g[i].v);
    			}
    		}
    	}
    	
    }
    
    int path1[MAXN];
    int path2[MAXN];
    int cntp1,cntp2;
    int ans;
    int main()
    {
    	int n,q;
    	int uu,vv;
    	int a,b;
    	int LCA,a1,a2;
    	scanf("%d%d%d",&n,&q,&s);
    	for(int i=1;i<=n-1;++i)
    	{
    		scanf("%d%d",&uu,&vv);
    		addedge(uu,vv);
    		addedge(vv,uu);
    	}
    	father[s]=s;
    	visited[s]=true;
    	bfs();
    	for(int i=1;i<=q;++i)
    	{
    		scanf("%d%d",&a,&b);
    		for(int j=a;j!=s;j=father[j])
    		{
    			path1[++cntp1]=j;
    		}
    		path1[++cntp1]=s;
    		for(int j=b;j!=s;j=father[j])
    		{
    			path2[++cntp2]=j;
    		}
    		path2[++cntp2]=s;
    		while(path1[cntp1--]==path2[cntp2--])
    		{
    			ans=path1[cntp1+1];
    		}
    		printf("%d\n",ans);
    		memset(path1,0,sizeof(path1));
    		memset(path2,0,sizeof(path2));
    		cntp1=0;
    		cntp2=0;
    		ans=0;
    	}
    	return 0;
    }
    

    然而,暴力的时间和空间复杂度根本无法接受。 我们来思考下面这个问题:我为什么要一个一个跳到根节点呢? 于是乎,“倍增”就出现了。 定义jump[a][b]数组的意义如下: 编号为a的点往根节点方向走(2^b)次之后的点的编号。 每一次不需要一个一个往根节点方向走,而是采取了一种类似于跳跃的模式。 往根节点方向走(2^0)次,即得到这个点的父亲节点。所以先初始化数组:

    for(int i=1;i<=n;++i)
    	{
    		jump[i][0]=father[i];
    	}//jump初值 
    

    然后,再将jump[i][1] jump[i][2]等求出来。 jump[i][j]可以通过jump[i][j-1]再往根节点方向走j-1次得到。 推得状态转移方程:jump[i][j]=jump[jump[i][j-1]][j-1];

    for(int j=1;j<=30;++j)
    	{
    		for(int i=1;i<=n;++i)
    		{
    			jump[i][j]=jump[jump[i][j-1]][j-1];
    		}
    	}//初始化jump数组
    

    接下来我们要开始求最近公共祖先了。然而,如果节点a深度为16,节点b深度为32,所求得的跳跃次数、路径长度都是不一样的,我们又要记录路径然后从后往前比较。 于是乎,我们想了一个办法:先把a,b跳跃到同一深度,再进行剩下的跳跃。(有更简便写法)

    if(dep[a]>dep[b]) //每次判断是否跳跃(1<<k)次,跳跃到同一深度 
    		{
    			for(int k=30;k>=0;--k)
    			{
    				if(tmp>=(1<<k))
    				{
    					a=jump[a][k];
    				}
    			} 
    		}
    		else if(dep[b]>dep[a]) 
    		{
    			for(int k=30;k>=0;--k)
    			{
    				if(tmp>=(1<<k))
    				{
    					b=jump[b][k];
    				}
    			} 
    		}//使得a,b位于同一深度 
    

    如果这个时候已经跳到同一个点,即a==b,则直接输出,否则进行我们最后的跳跃。只要jump[i][k]!=jump[j][k](k取值可以不做限制,因为无意义的那些范围的jump值均会是0)我们就跳跃。跳跃完之后,你会惊奇的发现father[a]==father[b];(可以自己模拟一下)所以我们输出任意一边的father均可。 一些没提到的细节和代码如下:

    #include<bits/stdc++.h>
    using namespace std;
    
    const int MAXN=500000+5;
    const int MAXM=1000000+5;
    
    int head[MAXN];//链式前向星 
    
    int father[MAXN];//父亲节点 
    
    bool visited[MAXN];
    
    int bianshu;
    
    struct edge//链式前向星 
    {
    	int v,next;
    }g[2*MAXM];//双向边,记得开2倍范围 
    
    void addedge(int u,int v)//链式前向星无权值加边 
    {
    	g[++bianshu].next=head[u];
    	g[bianshu].v=v;
    	head[u]=bianshu;
    	return;
    } 
    
    queue <int> q;//bfs用
     
    int dep[MAXN];//每个点的深度 
    
    void bfs(int s,int depth)//求father 
    {
    	q.push(s);
    	dep[s]=depth;
    	while(!q.empty())
    	{
    		int ppp=q.front();
    		q.pop();
    		for(int i=head[ppp];i;i=g[i].next)//遍历 
    		{
    			if(!visited[g[i].v])
    			{
    				visited[g[i].v]=true;
    				father[g[i].v]=ppp;
    				dep[g[i].v]=dep[ppp]+1;//存储深度,比父亲节点深度大1 
    				q.push(g[i].v);
    			}
    		}
    	}
    }
    
    int jump[MAXN][35];//定义:j[a][b]为a号点往根节点方向走(1<<b)次后的节点编号 
    
    int main()
    {
    	int n,q,s;
    	int uu,vv;
    	int a,b;
    	int tmp;//深度差 
    	
    	scanf("%d%d",&n,&q);//有时候需要读入s 
    	s=1; 
    	
    	for(int i=1;i<=n-1;++i)
    	{
    		scanf("%d%d",&uu,&vv);
    		addedge(uu,vv);
    		addedge(vv,uu);
    	}//加边 
    	
    	father[s]=0;//注意:father[根]一定要设为0,否则后面跳跃时出问题 
    	visited[s]=true;
    	bfs(s,1);//求father数组 
    	
    	for(int i=1;i<=n;++i)
    	{
    		jump[i][0]=father[i];
    	}//jump初值 
    	for(int j=1;j<=30;++j)
    	{
    		for(int i=1;i<=n;++i)
    		{
    			jump[i][j]=jump[jump[i][j-1]][j-1];
    		}
    	}//初始化jump数组 
    	 
    	while(q--)//操作 
    	{
    		scanf("%d%d",&a,&b);
    		
    		tmp=(dep[a]>dep[b]?dep[a]-dep[b]:dep[b]-dep[a]);//深度差值 
    		
    		if(dep[a]>dep[b]) //每次判断是否跳跃(1<<k)次,跳跃到同一深度 
    		{
    			for(int k=30;k>=0;--k)
    			{
    				if(tmp>=(1<<k))
    				{
    					a=jump[a][k];
    					tmp-=(1<<k);
    				}
    			} 
    		}
    		else if(dep[b]>dep[a]) 
    		{
    			for(int k=30;k>=0;--k)
    			{
    				if(tmp>=(1<<k))
    				{
    					b=jump[b][k];
    					tmp-=(1<<k);
    				}
    			} 
    		}//使得a,b位于同一深度 
    		
    		if(a==b)//跳到同一个点,即LCA就是当前的点,需要特判。 
    		{
    			printf("%d\n",a);
    			continue;
    		}
    		for(int k=30;k>=0;--k)
    		{
    			if((jump[a][k]^jump[b][k]))//异或符号^在此处等价于!= 符号 
    			{
    				a=jump[a][k];
    				b=jump[b][k];
    			}
    		}//跳2的k次方次
    		 
    		printf("%d\n",father[a]);
    	}
    	return 0;
    }
    

    感谢阅读我这一篇又臭又长的题解。

    • @ 2021-10-15 20:59:27

      好像有一句写错了 求jump[i][1] jump[i][2]的时候 jump[i][j]是要通过jump[i][j-1]再往根节点方向走2j12^(j-1)次得到

    • @ 2021-10-15 21:00:08

      就是说2的j-1次方 次

    • @ 2023-10-17 20:07:21

      %%%

    • @ 2024-10-23 18:11:13

      @ 试过了代码,TLE了

    • @ 2024-10-23 18:11:34

      试过了代码,TLE了

信息

ID
121
时间
2000ms
内存
256MiB
难度
6
标签
递交数
665
已通过
193
上传者